Robust Linear Regression via $\ell_0$ Regularization
نویسندگان
چکیده
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملLearning a regression function via Tikhonov regularization
We consider the problem of estimating a regression function on the basis of empirical data. We use a Reproducing Kernel Hilbert Space (RKHS) as our hypothesis space, and we follow the methodology of Tikhonov regularization. We show that this leads to a learning scheme that is different from the one usually considered in Learning Theory. Subject to some regularity assumptions on the regression f...
متن کاملSemi-supervised Regression via Parallel Field Regularization
This paper studies the problem of semi-supervised learning from the vector field perspective. Many of the existing work use the graph Laplacian to ensure the smoothness of the prediction function on the data manifold. However, beyond smoothness, it is suggested by recent theoretical work that we should ensure second order smoothness for achieving faster rates of convergence for semisupervised r...
متن کاملA smoothed monotonic regression via L2 regularization
Monotonic Regression (MR) is a standard method for extracting a monotone function from non-monotonic data, and it is used in many applications. However, a known drawback of this method is that its fitted response is a piecewise constant function, while practical response functions are often required to be continuous. The method proposed in this paper achieves monotonicity and smoothness of the ...
متن کاملTransfer Regression via Pairwise Similarity Regularization
Transfer learning methods address the situation where little labeled training data from the “target” problem exists, but much training data from a related “source” domain is available. However, the overwhelming majority of transfer learning methods are designed for simple settings where the source and target predictive functions are almost identical, limiting the applicability of transfer learn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2018
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2017.2771720